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J .  Phys. A: Math. Gen. 20 (1987) L479-L485. Printed in the UK 

LEITER TO THE EDITOR 

Operator content of the Ashkin-Teller quantum chain- 
superconformal and Zamolodchikov-Fateev invariance: 
I. Free boundary conditions 

M Baake, G von Gehlen and V Rittenberg 
Physikalisches Institut, Universitat Bonn, 5300 Bonn 1, Nussallee 12, West Germany 

Received 2 March 1987 

Abstract. Based on our numerical analysis, we conjecture the operator content of the 
finite-size limit of the spectra of the Ashkin-Teller model with free boundary conditions. 
The same operator content is obtained from a Hamiltonian with a four-fermion interaction 
and a U(1) Kac-Moody Sugawara structure. 

For some special values of the coupling constant the model exhibits N = 2 superconfor- 
mal and Zamolodchikov-Fateev invariance. The operator content in these cases is expressed 
in terms of irreducible representations of the corresponding algebras. 

The quantum version of the Ashkin-Teller (1943) model was introduced by Kohmoto 
et a1 (1981), who considered the Hamiltonian: 

where N represents the number of sites, A plays the role of the inverse of temperature, 
E is a coupling constant (-1 6 E s l ) ,  

ir 
h =  

and the matrices u and r are 

4 

1 0  0 

f f = [ O  0 0 - 1  O 4) 0 

0 0  0 

(3) 

As will become clear in a short while it is more convenient to consider h instead 
of E as the parameter of the model. Thus h = a  corresponds to the four-state Potts 
model, h = to two decoupled Ising models, h = 1 to a Kosterlitz-Thouless transition 
and h = a3 to a frozen phase. The model is self-dual and has a continuous phase 
transition at A = 1 for CO> h 3:. For h > 1 the model exhibits a critical fan: for each 
h it stays critical in a domain l/A,,,( h) s A 6 A,,,( h). In the whole region of criticality 
the phase transition corresponds to a Virasoro algebra with a central charge c = 1 (von 
Gehlen and Rittenberg 1987). Since our numerical studies suggest that in the critical 
fan the critical exponents depend only on h and not on A we will consider here only 
the half-line A = 1, h 3 ;. 
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L480 Letter to the Editor 

The aim of this letter? is to describe the finite-size limit of the spectrum of the 
Hamiltonian ( 1 )  with free boundary conditions: 

rN+, = 0. (4) 

Here we describe only the main results of our work, as an extended version is going 
to be published elsewhere. The spectra for boundary conditions compatible with the 
torus are shown in the following letter (Baake et al 1987). 

The finite-size sscaling limit of the spectrum of the Hamiltonian is defined as 
follows. Let E k ( N )  be the energy levels ( E o ( N )  corresponds to the ground-state 
energy) for the Hamiltonian with N sites. We consider the quantities (Cardy 1984, 
1986, von Gehlen and Rittenberg 1986a): 

It is a consequence of conformal invariance in two dimensions that the quantities $k 

are described by unitary irreducible representations ( I R )  of the Virasoro algebra: 

[L,, L , ] =  ( n - m ) L m + , + ~ c n ( n 2 - 1 ) 6 , , _ ,  (6) 

= A b )  L J A )  = o ( n a l )  (7)  

g r = A + r  ( r  = 0,1,2, .  . .) ( 8 )  

where n, m E i? and c = 1. An I R  characterised by the highest weight A 

gives a contribution 

to the spectrum 'iZk. A is a surface critical exponent and the level A + r has a degeneracy 
D(A, r ) .  For c = 1,  which is our case, D is independent of A and equal to the function 
r( r )  determined by the partition function: 

unless A = ft '  where t is an integer. In this case D(ft',  r )  is determined by the partition 
function (Kac 1979) 

The level A is called ascendant, the levels A +  r descendants. Since the Hamiltonian 
( 1 )  is parity invariant it is important to see the relative parity of the descendants and 
the ascendant. From the outer automorphism 

L, H (- 1)"  n e Z  ( 1 1 )  
of the Virasoro algebra (6) we learn that the levels / A +  r )  have a relative parity ( - l ) r  
to the level (A) .  From now on we denote by (A)' ( P =  *) the conformal tower 
(ascendant plus descendants) corresponding to an ascendant with parity P. 

As the reader might have noticed, the relation (8) is valid only for a special 
normalisation of the Hamiltonian (1) (which corresponds to taking the 'sound velocity' 
equal to one). From our numerical analysis we have guessed the proper normalisation 
factor given in (1 ) .  

t Some results from this letter have been presented earlier (Rittenberg 1986). 
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Before we can display the spectra we have to know the symmetry of the problem. 
With the exception of the point h = a ,  where the symmetry is higher, the model has 
D4 symmetry. This is the group of order eight corresponding to the transformations: 

(I'j)" = Amfl(rj)" (12) 

in the Hamiltonian (1). The eight matrices A""' are 

X' = 0 i 2 '  ( I  = 0, 1 ,2 ,3 )  C=[! i) (13) r o  o o i3' ") 
and Z'C. We recall that D4 has a two-dimensional representation: 

0 1  
o i-' 

and four one-dimensional representations D,,,(a, /3 = 0 , l ) :  

An extensive study of the lower part of the spectrum which has extended our 
previous results (von Gehlen and Rittenberg 1986b, 1987) has let us to conjecture the 
following operator content for the various sectors (irreducible representations of D4) 
of the spectrum: 

(The parities in (16) are defined always relative to the lowest level within each sector 
which is taken, by convention, to have parity +.) One should keep in mind that, since 
the D representation is two dimensional, the corresponding operator content appears 
twice in the spectrum. Notice that some anomalous dimensions are dependent on the 
coupling constant h and some are not. We also observe that the anomalous dimensions 
are all positive for the whole interval h > 0. From now on we will assume that there 
exists such a model where also the region f > h > 0 is displayed. Equations (16) have 
been checked at the Ising decoupling point ( h  = 1) and one can see that they have the 
proper S4 symmetry at the four-state Potts model point ( h  = 4). 

In order to study the properties of the system under modular transformations 
(Cardy 1986), it is interesting to compute the partition functions: 

(17) Z, = Tr( g q L o )  
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where g is one of the eight group elements of D,. Obviously Z, is not a function of 
the group elements but of the conjugacy classes. For the five conjugacy classes of D4 

I :  { e = Z o }  11: {P} 111: {E, E3} 

IV: {ZC, Z3C) v: { c, Z2C} (18) 

ZI = 63(0, d/4h)m4d 
we have the following partition functions: 

where 

The operator content of the finite-size scaling limit spectrum (16) can be obtained 
from the following fermionic Sugawara construction of a U( 1 )  Kac-Moody algebra 
(Corrigan 1986 and references therein). Consider two sets of fermionic operators a, 
and b, (p ,  v ~ Z + f ) :  

and the Kac-Moody generators: 

1 
T --Ca-,b, L, = f c : T , _ , T n :  
O-tm , n 

( L ;  = L-,,  T:  = T-,,,  m, n E Z) 

where : : denotes the normal product. The L, generators verify the Virasoro algebra 
(6) with c = 1 and together with the Tn they define the U(1) Kac-Moody algebra: 

[ Tm, Ln1= mTm+n [ Tm 9 Tn 1 = m a m , - n  m , n E Z .  (23) 

The Lo generator given by (22) has the spectrum (16). The I R  of a U(1) Kac-Moody 
algebra are given by an ascendant A and descendants A +  r with a degeneracy T( r)  
(see (9)) for any A (including A = O ) .  We now notice that we can combine the I R  of 
the Virasoro algebra appearing in Do,o and Do,' 

{O}= k z o  8 (4k2) { l } =  k = O  @ ((2k-k1)*) (24) 

into one I R  corresponding to A = 0 of the U( 1 )  Kac-Moody algebra: 

(o)KM = {0}0{1} (25) 
and thus the entire spectrum (16) can be described in terms of I R  of the U( 1 )  Kac-Moody 
algebra. 
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We now consider the problem of higher symmetries (infinite Lie algebras or 
superalgebras) in the Ashkin-Teller model. An inspection of (16) shows that, in  general, 
the spectrum is described by an infinite number of ascendants. The situation is different 
for special values of h. There the spectrum can be described by a finite number of 
ascendants (primary fields) but with a degeneracy of the descendants larger than r (  r ) .  
This occurs when some of the ascendants of Virasoro I R  collapse on the descendants 
of some other IR.  This phenomenon probably occurs for any h being a rational number. 
Here we explore only some special cases. We start with N = 1 superconformal invari- 
ance. The corresponding superalgebra (Friedan er a1 1985, Berdshadski et a1 1985, 
Eichenherr 1985) is given by (6) together with 

where r, s E E in the Ramond sector and r, s, E Z ++ in the Neveu-Schwan sector. 
The possible values of A for c = 1 are: 

From the Goddard et al (1986) character expression one can derive the following 
decomposition of the I R  of the N = 1 superconformal algebra in terms of I R  of the 
Virasoro algebra: 

A close examination of (16) shows that there are four values of h where the spectra 
can be expressed in terms of I R  of N = 1 (strong hints in this direction are already 
known, see von Gehlen and Rittenberg (1986b) and Friedan and Shenker (1986)). The 
operator content in each of those cases is 

Do.00 Dl,l = LO11 ~0,,0D,.0=[111 D = E l l  

Do,oeDl,l = [ o i 1 ~ [ a i l  

h =1. 
6 .  

h = 2 .  
2.  

h = 2 .  
3 .  

DOJO D1.0 = [ 111 0 [ill D = [?I1 0 [ill 
Do.0 = LO11 D0.1 =[I11 4 0  = 4 1  = [?I D = (i); 

h = 6 :  D ~ , ~  = [oi1e[3i1 D0,l = [111 +[$I1 4 0  = Dl,l = r ~ 1 1 0 r 6 1 1  

D = ( i ,P0 (A);. (29) 
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Notice that the Neveu-Schwarz multiplets appear with the proper 2, grading. The 
existence of the (0)rs and ( l )ps  IR for all the four values of h and the fact that the 

(d)", (6)" I R  do not appear is a signal that the symmetry of the problem is 
even higher. The symmetry is given by the N = 2 superconformal algebra (Di Vecchia 
et al 1985, Waterson 1986, Boucher et a1 1986) which is obtained combining together 
the U(l)  Kac-Moody algebra (already known to be present in the system for any h )  
with the N = 1 superconformal algebra which is there for the four above-mentioned 
values of h. 

Another interesting algebra which shows up in the model is that of Zamolodchikov 
and Fateev (1985). We will not describe the algebra here but just mention that for 
c = 1 one expects primary fields with the following values of A: 0, A, A, f ,  6, $, 1 
and 3. 

The degeracies along the conformal towers were not known till now. We are going 
to give them here: 

9 Z F -  9 
[ O]ZF = { 0) [ 1IZF = { 1) [AI"' = [All [ZI --[E11 

[A]"= (&(6k+ 1)2) [41"' = glZ (i(3k + 11,) (30) 
k s Z  

As noticed already earlier (von Gehlen and Rittenberg 1986b, Alcarhz 1986, Alcarhz 
and Lima Santos 1986) the Zamolodchikov-Fateev algebra occurs at h = f and 3.  The 
operator content for the two values of h is 

h =i. 3 .  Do,,@ Dl,o = [O]ZF0[3]ZF 

Do,,@ Dl,l = [1]ZF@[3]ZF 

Do,,@ Dl,l = [11zF0[31ZF0[f1ZF 

D = [ ;]"'@ [A]? 
We conclude here the presentation of our results on the operator content of the 

Ashkin-Teller model with free boundary conditions. The more involved operator 
content for the other boundary conditions will be given in the following letter. 
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